Experimental

Reaction of compound 1 with MgSO₄·7H₂O. Enamine 1 (35.9 g, 0.17 mol), MgSO₄·7H₂O (18.33 g, 0.51 mol), and 50 mL of CH₂Cl₂ were placed in a loosely covered glass vessel. The conversion of compound 1 was controlled by ¹⁹F NMR spectroscopy (the external standard was CF₃COOH). After 28 days the organic part was poured into a distillation flask and rectified. A fraction with b.p. 35—42 °C was removed at atmospheric pressure, which was a CH₂Cl₂ admixured with aldehyde 5. ¹H NMR spectrum without considering CH₂Cl₂ (CDCl₃), δ: 2.61 (qd, 2 H, CH₂) $^{3}J_{H,H}$ = 2.1 Hz, $^{3}J_{H,F}$ = 10.8 Hz); 9.11 (m, 1 H, CHO). ¹⁹F NMR (CDCl₃), δ: 15.30 (t, 3 F, CF₃, $^{3}J_{F,H}$ = 10.8 Hz). Dioxine 3 (10.6 g, 36%) was obtained on further rectification in vacuo (water-jet pump) as a colorless liquid, b.p. 57—59 °C (14 Torr). Found (%): C, 28.58; H, 1.01; F, 61.13. C₈H₃F₁₁O₂. Calculated (%): C, 28.25; H, 0.89; F, 61.45. ¹H NMR (CDCl₃), δ: 3.55 (sept of d, 1 H, CH(CF₃)₂, $^{3}J_{H,H}$ = 2.3 Hz, $^{3}J_{H,F}$ = 7.4 Hz); 5.79 (br.s, 1 H, OCHO); 7.38 (m, 1 H, HC=C). ¹⁹F NMR (CDCl₃), δ: -9.37 (dq, 1 F, F_A, $^{2}J_{F,F}$ = 164.6 Hz, $^{4}J_{F,F}$ = 6.2 Hz); 13.58 (d, 6 F, CH(CF₃)₂, $^{3}J_{F,H}$ = 7.4 Hz); 14.48 (m, 3 F, C=CCF₃); 21.70 (d of quint, 1 F, F_B, $^{2}J_{F,F}$ = 164.6 Hz, $^{4}J_{F,F}$ = 3.7 Hz, $^{4}J_{F,H}$ = 3.7 Hz). ¹³C{¹H} NMR (CDCl₃), δ: 51.19 (sept, CH(CF₃)₂, $^{2}J_{C,F}$ = 29.8 Hz); 92.44 (m, OCHO); 105.39 (d of quint, CF₂CCF₃, $^{2}J_{C,F}$ = 28.5 Hz, $^{2}J_{C,F}$ =

35.3 Hz); 117.04 (dd, CF₂, ${}^{1}J_{C,F} = 248.2$ Hz, ${}^{1}J_{C,F} = 265.8$ Hz); 121.36 (q, C=CCF₃, ${}^{1}J_{C,F} = 270.0$ Hz); 121.50 (q, CH(CF₃)₂, ${}^{1}J_{C,F} = 282.1$ Hz); 152.55 (m, HC=C).

Then, using a forevacuum pump, fluoride 4 (9.9 g, 31%) was obtained, b.p. 93-97 °C (1.5 Torr). The spectral characteristic of compound 4 are consistent with published data.²

This work was financially supported by the Russian Foundation for Basic Research (Project No. 95-03-09332).

References

- A. N. Chekhlov, A. V. Popov, and A. N. Pushin, *Dokl. Akad. Nauk*, 1993, 331, 62 [*Dokl. Chem.*, 1993 (Engl. Transl.)].
- D. C. England, L. Solomon, and C. G. Krespan, J. Fluor. Chem., 1973, 3, 63.
- 3. Yu. A. Cheburkov and I. L. Knunyants, Fluorine Chem. Rev., 1967, 1, 107.
- Yu. A. Cheburkov, N. Mukhamadaliev, Yu. E. Aronov, and I. L. Knunyants, Izv. Akad. Nauk SSSR, Ser. Khim., 1965, 14, 1476 [Bull. Acad. Sci. USSR, Div. Chem. Sci., 1965, 14, 1440 (Engl. Transl.)].

Received January 8, 1997

Enantiospecific synthesis of (S)-(+)-3-methylheneicosan-2-one, an analog of the sex pheromone of the German cockroach (*Blatella germanica* L.) from (-)-(1R,4S)-menthone

G. Yu. Ishmuratov,* M. P. Yakovleva, R. Ya. Kharisov, I. M. Muslimova, R. R. Muslukhov, R. L. Safiullin, and G. A. Tolstikov

Institute of Organic Chemistry, Ufa Research Center of the Russian Academy of Sciences, 71 prosp. Oktyabrya, 450054 Ufa, Russian Federation.

Fax: 007 (347 2) 35 6066

An enantiospecific synthesis of (S)-(+)-3-methylheneicosan-2-one, an analog of the sex pheromone of the German cockroach (*Blatella germanica* L.), was carried out through selective transformations of (3R,6S)-3,7-dimethyloctane-6-olide obtained from (-)-menthone via the Baeyer-Villiger reaction.

Key words: (S)-(+)-3-methylheneicosan-2-one, pheromone analog; (-)-(1R,4S)-menthone; (3R,6S)-3,7-dimethyloctane-6-olide; Baeyer--Villiger, Wittig, and Wacker--Tsuji reactions.

The starting compounds for the known syntheses of (S)-(+)-3-methylheneicosan-2-one (1), a biologically active analog of the sex pheromone of the German cockroach (*Blatella germanica* L.), are (S)-2-methyl-4-pentenoic acid¹ and enantiomerically enriched monoterpenoid (S)-(+)-dihydromyrcene.²

We carried out an alternative synthesis of optically pure attractant 1 from (3R,6S)-3,7-dimethyloctane-6-olide (2), the product of regio- and stereospecific oxidation of (-)-menthone (3) by decaneperoxysulfonic acid by the Baeyer-Villiger reaction³ (Scheme 1).

Scheme 1 3 2 4 (98%) C 8H37 0 OH C 8H37 0 OH C 99%) 7 (96%) 7 (96%)

Reagents and conditions: a. See Ref. 3; b. $Bu^{i}_{2}AlH$, -70 °C; c. $[n-C_{15}H_{31}CH_{2}PPh_{3}]Br/Bu^{n}Li$; d. H_{2} , Ni; e. PCC; f. MCPBA; g. KOH/MeOH, Pb(OAc)₄/Cu(OAc)₂· $H_{2}O$; h. $O_{2}/PdCl_{2}$ — $Cu_{2}Cl_{2}$.

To construct the lipophilic part of molecule 1, lactone 2 was converted into the corresponding lactol 4* by hydride reduction, and the latter was olefinated by the Wittig reaction to give Z-unsaturated alcohol 5 (the content of the main stereoisomer was 78%, according to the capillary GLC data). Alcohol 5 was catalytically hydrogenated to form its saturated analog 6. A chain of consecutive transformations, which occur without involving the C(6) asymmetric center, was used for the formation of the structure of the target \alpha-methylketone 1 with an S-configuration: consecutive oxidation of alcohol 6 with pyridinium chlorochromate into ketone 7 followed by regiospecific Baeyer-Villiger reaction to afford isopropyl (S)-4-methyldocosanate (8), oxidative decarboxylation of the corresponding acid, and Wacker-Tsuji transformation4 of the resulting terminal alkene 9 by molecular oxygen in the presence of a palladium catalyst.

The total yield of the target attractant 1 from ketone 3 was 15.2% over the nine steps of the synthesis.

Experimental

IR spectra were recorded on a UR-20 instrument in thin layers. ¹H NMR spectra were obtained on a Tesla BS-567 spectrometer (working frequency 100 MHz) and a Bruker AM-300 instrument (300 MHz) in CDCl₃ with SiMe₄ as the internal standard. ¹³C NMR spectra were recorded on a Bruker AM-300 instrument (75.47 MHz) in CDCl₃ with SiMe₄ as the internal standard. Optical rotation was measured on a Perkin-Elmer-241-MC polarimeter. GLC analyses were carried out on a Chrom-5 instrument (column length 1.2 m, stationary phase 5% SE-30 silicone on Chromaton N-AW-DMCS (0.16—0.20 mm), operating temperature 50—300 °C) and Shimadzu GC-9A instrument (25 m × 0.2 mm quartz capillary column, stationary phase PEG-20M, operating temperature 30—220 °C) with helium as the carrier gas.

(35,6R)-2,6-Dimethyltetracos-8-en-3-ol (5). An 1.17 M solution of Bu^aLi in hexane (18.2 mL, 21.3 mmol) was added dropwise at 0 °C under argon to a suspension of [Me(CH₂)₁₅PPh₃]Br (11.58 g, 20.4 mmol) in dry THF (106 mL). The mixture was kept at ~20 °C for 1 h and cooled to -70 °C, and a solution of lactone 2 (1.18 g, 6.8 mmol) in dry THF (4 mL) and a 60.5% solution of DIBAH in toluene (4.2 mL, 13.6 mmol) were added dropwise in sequence. The reaction mixture was kept at -70 °C for 1 h, at -55 °C for 1 h, and at 20 °C for 16 h, decomposed with cold water (3 mL), stirred for 15 min, and concentrated. The residue was diluted with pentane, filtered through a SiO₂ layer (5 cm), and chromatographed on SiO₂ (pentane) to afford 1.08 g (42%) of alcohol 5, $[\alpha]_D^{24}$ -12.0° (c 1.2, hexane). IR, v/cm^{-1} : 1650, 3020 (=CH); 3625 (O-H). H NMR, δ: 0.80-1.00 (m, 12 H, CH₃); 1.22-1.60 (br.s, 30 H, CH₂); 1.61-1.72 (m, 1 H, H(6)); 1.82-1.95 (m, 1 H, H(2)); 1.95-2.10 (m, 4 H, CH₂-C=C); 3.30-3.42 (m, 1 H, CH-O). ¹³C NMR, δ : 16.40, 19.05, 19.77 (q, C(1), CH₃C(2), CH₃C(6)); 33.69 (d, C(2); 77.16 (d, C(3)); 34.41 (t, $C(\overline{4})$); 33.02 (t, C(5)); 33.67 (d, C(6)); 32.78 (t, C(7)); 128.23 (d, C(8)); 130.95 (d, C(9)); 27.45 (t, C(10)); 29.70 (t, C(11)); 29.92 (t, C(12)--C(20)); 29.48 (t, C(21)); 31.69 (t, C(22)); 22.80 (t, C(23)); 14.23 (q, C(24)).

(35,65)-2,6-Dimethyltetracosam-3-ol (6). The hydrogenation of alcohol 5 (1.00 g, 2.63 mmol) was carried out in dry THF (20 mL) in the presence of Raney nickel (0.06 g) at 90 °C and at hydrogen pressure of 75 atm for 24 h. The reaction mixture was then filtered off, and the solvent was evaporated to give 0.97 g (97%) of alcohol 6, $[\alpha]_D^{25}$ -19.0° (c 4.43, hexane). 1R, v/cm^{-1} : 3625 (O-H). ¹H NMR, 8: 0.80-1.00 (m, 12 H, H(1), CH₃C(2), CH₃C(6), H(24)); 1.18-1.36 (m, 38 H, H(4), H(5), H(7)-H(23)); 1.41-1.55, 1.64-1.69 (both m, 2 H, H(6), H(2)); 3.23-3.35 (br.s, 1 H, OH); 3.44-3.51 (m, 1 H, H(3)).

(S)-2,6-Dimethyltetracosan-3-one (7). A solution of alcohol 6 (0.72 g, 1.88 mmol) in dry CH_2Cl_2 (2 mL) was added in one portion to a suspension of PCC (0.95 g, 4.41 mmol) in dry CH_2Cl_2 (9 mL). The reaction mixture was kept for 2 h, diluted with Et_2O , and filtered through a SiO_2 layer (5 cm). The solvent was evaporated to give 0.71 g (99%) of ketone 7. $[\alpha]_D^{21} + 7.90^{\circ}$ (c 0.5, hexane). IR, ν/cm^{-1} : 1720 (C=O). H NMR, 8: 0.80-0.90 (m, 6 H, CH₃C(6), H(24)); 1.05-1.13 (m, 6 H, H(1), CH₃C(2)); 1.13-1.35 (m, 36 H, H(5), H(7)-H(23)); 1.50-1.61 (m, 1 H, H(6)); 2.40-2.49 (m, 2 H, CH₂CO); 2.54-2.58 (m, 1 H, CHCO).

Isopropyl-(5)-4-methyldocosamate (8). A solution of ketone 7 (0.26 g, 0.68 mmol) in heptane (1 mL) was added at ~20 °C to a suspension of MCPBA (0.18 g, 1.01 mmol) in dry CHCl₃ (2 mL). The mixture was stirred for 48 h at ~20 °C,

The structure of the formed lactol will be discussed in one of the following communications.

diluted with CHCl₃ (20 mL), washed gradually with saturated NaHCO₃ and NaCl solutions, dried with MgSO₄, and concentrated. Chromatography on SiO₂ (heptane) yielded 0.26 g (96%) of ester 8, $\left[\alpha\right]_D^{21}$ -1.53° (c 4.5, CHCl₃). IR, v/cm⁻¹: 1745 (C=O). ¹³C NMR, 8: 22.01 (q, CH₃CO); 67.40 (d, C-O); 173.74 (s, C(1)); 30.18 (t, C(2)); 36.94 (t, C(3)); 32.64 (t, C(4)); 19.48 (q, CH₃C(4)); 32.65 (d, C(5)); 27.22 (t, C(6)); 29.61 (t, C(7)); 29.95 (t, C(8)-C(19)); 32.19 (t, C(20)); 22.19 (t, C(21)); 14.27 (q, C(22)).

(S)-3-Methylheneicosene-1 (9). KOH (0.03 g) was added to a solution of ester 8 (0.19 g, 0.48 mmol) in MeOH (0.5 mL). The mixture was refluxed for 3 h, then cooled to ~20 °C, acidified with 10% HCI, extracted with Et₂O (20 mL), dried with MgSO₄, and concentrated. The residue (0.12 g) [IR, v/cm⁻¹: 1715 (C=O)] was dissolved in dry benzene (1.5 mL), and then Cu(OAc)₂·H₂O (0.01 g, 0.05 mmol), dry pyridine (0.02 mL), and Pb(OAc)₄ in portions (0.23 g, 0.52 mmol each) were added at 75 °C to the solution. The mixture was boiled until liberation of gas stopped (~1.5 h), diluted with Et₂O (50 mL), and filtered through a SiO₂ layer (10 cm). The filtrate was concentrated to give 0.08 g (54%) of olefin 9, $[\alpha]_D^{19}$ +0.50° (c 1.6, CDCl₃). ¹H NMR, 8: 0.86 (t, 3 H, H(21), J = 6.6 Hz); 0.91-0.98 (d, 3 H, CH₃C(3), J = 6.7 Hz); 1.25-1.38 (br.s, 34 H, H(4)-H(20)); 2.00-2.15 (m, 1 H, H(3)); 4.9 (dd, 2 H, H(1), J = 17.2 Hz, J = 10.2 Hz); 5.70 (ddd, 1 H, H(2), J = 17.2 Hz, J = 10.2 Hz, J = 7.3 Hz). ¹³C NMR, δ: 112.28 (t, C(1)); 145.15 (d, C(2)); 37.88 (d, C(3); 20.29 (q, $CH_3C(3)$); 38.80 (t, C(4)); 27.39 (t, C(5)); 29.50 (t, C(6)); 29.83 (t, C(7)—C(18)); 32.07 (t, C(19)); 22.83 (t, C(20)); 13.63 (q, C(21)).

(S)-3-Methylheneicosan-2-one (1). To prepare the catalytic system, CuCl (0.03 g, 0.30 mmol) was added at 60 °C to a suspension of PdCl₂ (0.01 g, 0.06 mmol) in THF (2.3 mL) and H₂O (0.3 mL), and the mixture was stirred for 5 min with bubbling of oxygen at a rate of 5 L h⁻¹. Olefin 9 (0.08 g, 0.26 mmol) was added dropwise to the catalytic system. The reaction mixture was stirred under the conditions used for the preparation of the catalytic system (60 °C, O2) for 6 h and filtered. The filtrate was diluted with CHCl₃ (30 mL), washed with 5% HCl (3×5 mL) and saturated NaCl, dried with MgSO₄, and concentrated. Gradient chromatography of the residue on SiO₂ with the hexane-Et₂O system (from 0 to 10% of the latter) afforded 0.06 g (74%) of attractant 1, m.p. 34.0-35 °C, $[\alpha]_D^{20}$ +6.6° (c 2.4, CHCl₃) (cf. Ref. 2). Its ¹H NMR and IR spectra were identical to those described previously.2

References

- R. Rossi, A. Carpita, and M. Marasco, Chim. Ind. (Milano), 1981, 63, 503.
- Nguen Kong Khao, M. V. Mavrov, and E. P. Serebryakov, Izv. Akad. Nauk SSSR, Ser. Khim., 1988, 693 [Bull. Acad. Sci. USSR, Div. Chem. Sci., 1988, 37, 592 (Engl. Transl.)].
- V. N. Odinokov, G. Yu. Ishmuratov, M. P. Yakovleva, R. R. Muslukhov, R. L. Safiullin, A. N. Volgarev, V. D. Komissarov, and G. A. Tolstikov, *Dokl. Akad. Nauk*, 1992, 326, 842 [Dokl. Chem., 1992 (Engl. Transl.)].
- 4. J. Tsuji, Synthesis, 1984, 369.

Received January 17, 1997

Stereospecific synthesis of 11*E*-tetradecenal, 11*E*-tetradecen-1-ol, and its acetate, pheromone components of insects of *Lepidoptera* order, from 10-undecenoic acid

G. Yu. Ishmuratov, * M. P. Yakovleva, R. Ya. Kharisov, R. R. Muslukhov, and G. A. Tolstikov

Institute of Organic Chemistry, Ufa Research Center of the Russian Academy of Sciences, 71 prosp. Oktyabrya, 450054 Ufa, Russian Federation.
Fax: 007 (347 2) 35 6066

A regio- and stereospecific synthesis of 11E-tetradecen-1-ol and its derivatives, which are pheromone components of many insect species of *Lepidoptera* order, by means of a reaction of methylmagnesium cuprate reagent with 1,12-tridecadien-3-yl acetate by the S_N2' mechanism, was carried out.

Key words: 10-undecenoic acid; 1,12-tridecadien-3-yl acetate; 11 E-tetradecen-1-ol, pheromone.

A series of syntheses¹⁻⁷ of 11*E*-tetradecenal and the corresponding alcohol and acetate, which are pheromone components of many insect species of the *Lepi*-

doptera order, e.g., meadow moth (Loxostege sticticalis), a very dangerous agricultural pest, have been reported. A method for synthesizing 11 E-tetradecenal from

Translated from Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 1074-1075, May, 1997.